文章编号: 0258-7025(2010)04-0996-04

$Na_2({}^{3}\Lambda_u)$ 高位态的预解离和碰撞转移

王雪燕 周冬冬 王大贵 穆尼赛 戴 康 沈异凡 (新疆大学物理科学与技术学院,新疆 乌鲁木齐 830046)

摘要 利用光学-光学双共振光谱技术,测量了 Na₂(³ Λ_u)态的预解离率以及与 Na 基态原子的碰撞转移率。样品 池温度控制在 553~703 K之间,用532 nm连续激光激发 Na₂(1³ Σ_u^+)至 Na₂(1³ Σ_g^+)态,调频脉冲激光器将 1³ Σ_g^+ 激 发至³ Λ_u 高位态。在不同的 Na 密度下记录³ $\Lambda_u \rightarrow 1^3 \Sigma_g^+$ 跃迁的时间分辨光强,得到³ Λ_u 的有效寿命。由 Stern-Volmer 方程得到³ Λ_u 态的辐射率与预解离率之和为(4.8±1.2)×10⁷ s⁻¹,而总的碰撞去布居截面为(2.7±0.5)×10⁻¹⁴ cm²。 测量 Na₂ 分子的³ $\Lambda_u \rightarrow 1^3 \Sigma_g^+$ 以及 Na 原子的 5S → 3P,3D → 3P 辐射跃迁的时间积分光强。由光强比得到 Na₂(³ Λ_u) 向 Na(3D)的预解离率为(8.0±2.4)×10⁶ s⁻¹, Na₂(³ Λ_u) → Na(5S,3D)的碰撞转移截面分别为 $\sigma_{5S} =$ (6.2±1.9)×10⁻¹⁵ cm², $\sigma_{3D} =$ (1.1±0.3)×10⁻¹⁵ cm²。

关键词 光谱学;碰撞转移;预解离;时间分辨荧光;时间积分光强;Na₂分子 中图分类号 O562.5;O657.38 **文献标识码** A **doi**: 10.3788/CJL20103704.0996

Predissociation and Collisional Transfer of the High-Lying State of the $Na_2({}^3\Lambda_u)$

Wang Xueyan Zhou Dongdong Wang Dagui Mu Nisai Dai Kang Shen Yifan (School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China)

Abstract The ${}^{3}\Lambda_{u}$ state of Na₂ is excited by using optical-optical double resonance spectroscopy. The predissociative rates and collisional transfer rates of ${}^{3}\Lambda_{u}$ state are experimentally measured. The cell temperature varies between 553 K and 703 K. A continuous-wave (CW) all-solid-state green laser (532 nm) is used to pump Na₂ from ground state $1 {}^{3}\Sigma_{u}^{+}$ to the $1 {}^{3}\Sigma_{g}^{+}$. Then an optical parameter oscillator (OPO) laser is used to excite high-lying ${}^{3}\Lambda_{u}$ state. From time-resolved fluorescence for the ${}^{3}\Lambda_{u} \rightarrow 1 {}^{3}\Sigma_{g}^{+}$ transition at different Na densities, the effective lifetimes of the Na₂ (${}^{3}\Lambda_{u}$) state are yielded. Based on the Stern-Volmer equation, the sum of the radiative and predissociative rates is obtained with (4.8 ± 1.2) × 10⁷ s⁻¹, and the total cross section for deactivation of the Na₂ (${}^{3}\Lambda_{u}$) by means of collisions with Na is (2.7 ± 0.5) × 10⁻¹⁴ cm². With different Na densities, the time-integrated intensities of ${}^{3}\Lambda_{u} \rightarrow 1 {}^{3}\Sigma_{g}^{+}$, 5S \rightarrow 3P and 3D \rightarrow 3P radiative transition are measured. The intensity ratios versus the Na densities can be fitted by the straight lines. From the slopes and the intercepts, we obtain predissociative rate of (8.0 ± 2.4) × 10⁶ s⁻¹ from Na₂ (${}^{3}\Lambda_{u}$) to Na(3D), and the cross sections of (6.2 ± 1.9) × 10⁻¹⁵ cm² and (1.1 ± 0.3) × 10⁻¹⁵ cm² for collisional energy transfer from Na₂ (${}^{3}\Lambda_{u}$) to Na(5S) and from Na₂ (${}^{3}\Lambda_{u}$) to Na(3D), respectively.

1 引 言

多年来,国内外研究人员对原子分子系统中各 种碰撞传能过程进行了广泛的研究^[1~3],而分子高 位态的预解离及能量转移在光化学及态-态相互作 用中起重要作用,也是得到激发态原子分子的重要 方法^[4~6],因此受到人们很大的关注。

碱分子激发能级低,容易用激光激发,一些较重的碱金属(如 Rb,Cs)分子能级密度很大,可能实现

收稿日期:2009-05-11; 收到修改稿日期:2009-07-21

基金项目:国家自然科学基金(10664003)资助课题。

作者简介:王雪燕(1984—),女,硕士研究生,主要从事激光光谱方面的研究。E-mail:wangxueyan2003@163.com

导师简介:沈异凡(1944—),男,教授,博士生导师,主要从事原子分子和激光光谱学方面的研究。

几乎连续的调谐,且其辐射的荧光位于近红外,这就 提供了研制高功率近红外调频激光器的可能性。碱 原子只有一个价电子,故理论上计算它们的各种碰 撞截面相对简单。

高位态碱分子的预解离及与基态原子碰撞均可 产生高位态原子,如 Na₂(7¹ Σ_{g}^{+})的预解离(或碰撞 解离)或与 Na(3S)的碰撞转移,均可产生 Na 的 4D,4F 及 5S 高位态,这些激发态原子除向低能级 辐射跃迁外,还存在许多其他过程,如产生 4D↔4F (它们之间仅差38 cm⁻¹)碰撞转移以及 4D+3S→ 3P+3P 的碰撞能量合并逆过程(REP)。在基态原 子密度较高时,上述过程的转移率与辐射率有相同 的量级。因此,在测量高位态碱分子的预解离率及 碰撞转移率时,要考虑上述过程的影响。

2 实验装置与测量方法

实验装置如图 1 所示,样品池由一个不锈钢材 料制成的十字交叉炉,其下方有一个小臂,用于放置 金属 Na,在未加热前热管炉的真空度达 10^{-4} Pa,气 压由气压计测量,热管炉由电热器加热,由热电偶监 测炉温,温度在 553~703 K之间。Na 原子密度则 在 $10^{14} \sim 10^{16}$ cm⁻³之间,而 Na₂ 分子密度约占 1% ~4%^[7]。

图 1 实验装置图

Fig. 1 Experimental apparatus

由固定频率 532 nm 连续激光激发 Na₂ 分子三 重基态 1³ Σ_{u}^{+} 至中间激发态 1³ $\Sigma_{g}^{+[8]}$,再由 YAG 脉 冲激光器抽运的光参量振荡器(OPO)700 nm激光 于相反方向激发 1³ Σ_{g}^{+} 态至高位态³ Λ_{u} 。按文献[9] 的计算,³ Λ_{u} 为 7³ Σ_{u}^{+} ,8³ Σ_{u}^{+} 或 4³ Π_{u} 态。OPO 激 光能量不大于2 mJ,以免产生多光子吸收影响实验 结果。

在与激光束垂直方向探测荧光,荧光由透镜聚 焦到单色仪狭缝上,由单色仪分光,信号经光电倍增 管(PMT)放大后,用 Boxcar 记录时间分辨光谱,并 把它们存储在计算机中,而时间积分光强由光子计 数器记录,积分时间1 s。用一个标准钨带灯测定探 测系统的光谱探测率。杂散光及光电倍增管暗电流 作为背景扣除。其中杂散光测量方法为:加热炉中 不放金属 Na,其真空度约为30 Pa,热管炉温约为 700 K(工作温度为 700 K时, Na 蒸气压约为 30 Pa),激光通过热管炉,测量得到的相应跃迁波长 (图 2)的光子计数即为散射光强。

图 2 实验中 Na₂和 Na 能级的布居和去布居过程 Fig. 2 Processes for the population and depopulation of Na₂ and Na in this experiment

3 速率方程分析

用 1,2,3 分别表示 Na₂(³ Λ_u),Na(3D),Na(5S) 态,如图 2 所示,它们的密度分别用 n_1, n_2, n_3 表示, 基态 Na 原子密度用 N 表示。因 Na₂(³ Λ_u)激发态 能级低于 Na(5S)态118 cm⁻¹,故 5S 态是通过 Na₂ (³ Λ_u)→Na(5S)的碰撞转移布居的(碰撞速率系数 用 k_{13} 表示),而 Na(3D)态可以通过³ Λ_u 的预解离 (预解离率用 Γ_{12}^{12} 表示)和碰撞转移(速率系数用 k_{12} 表示)得到布居。其中 Na(5S)态除了通过 5S→3P 辐射跃迁布居外,还可以通过 REP 过程^[10]

Na(5S) + Na(3S) → Na(3P) + Na(3P) (1) 去布居,其速率系数用 k_3^{REP} 表示。当 Na 原子密度 $N 为 10^{16} \text{ cm}^{-3}$ 量级时, $k_3^{\text{REP}} \cdot N 与 5S \rightarrow 3P$ 辐射率 有相同的量级,所以(1)式不能略去。而 Na(3D, 5S)与其他 Na 原子能级相距较远(如 5S 比最近的 4D 能级低1348 cm⁻¹),故它们之间的碰撞转移可略 去,因此有速率方程

$$\frac{\mathrm{d}n_1(t)}{\mathrm{d}t} = -\frac{n_1}{\tau_1},\tag{2}$$

$$\frac{\mathrm{d}n_2(t)}{\mathrm{d}t} = -\frac{n_2}{\tau_2} + (\Gamma_{12}^{\mathrm{p}} + k_{12}N)n_1, \qquad (3)$$

$$\frac{\mathrm{d}n_3(t)}{\mathrm{d}t} = -\frac{n_3}{\tau_3} + k_{13}Nn_1, \qquad (4)$$

(2)~(4)式中

$$1/\tau_1 = \Gamma_1 + \Gamma_{12}^{P} + k_{12}N + k_{13}N + k_1N, \quad (5)$$

$$1/\tau_2 = \Gamma_2, \qquad (6)$$

$$1/\tau_3 = \Gamma_3 + k_3^{\text{REP}} N. \tag{7}$$

(5)~(7)式中 Γ_1 , Γ_2 , Γ_3 为相应能级的自然辐射率, k_1 为³ Λ_u 态向除5S,3D能级以外态(主要是分子能级)的碰撞转移速率系数。脉冲激光瞬时(约5 ns) 激发³ Λ_u 态,故可在初始条件 $n_1(0) = n, n_2(0) = n_3(0) = 0$ 下解(2)~(4)式得到

$$n_1(t) = n \exp(-t/\tau_1),$$
 (8)

$$n_{2}(t) = \frac{(\Gamma_{12}^{p} + k_{12}N)n\tau_{2}\tau_{1}}{\tau_{2} - \tau_{1}} \times \left[\exp(-t/\tau_{2}) - \exp(-t/\tau_{1})\right], \quad (9)$$

$$n_{3}(t) = \frac{k_{13} N n \tau_{3} \tau_{1}}{\tau_{3} - \tau_{1}} \Big[\exp(-t/\tau_{3}) - \exp(-t/\tau_{1}) \Big].$$

(10)

(8) 式为纯指数函数,在不同 Na 原子密度下探测 ³ $\Lambda_u \rightarrow 1$ ³ Σ_g^+ 的时间分辨荧光,得到不同 Na 密度下 有效寿命 τ_1 。从(5) 式看出, $1/\tau_1 与 N$ 成线性关系。 由直线的斜率得到 $k_{12} + k_{13} + k_1$,由截距得到的 $\Gamma_1 + \Gamma_{12}^{s}$ 为³ Λ_u 的自发辐射率与解离率之和。分别将 (8) ~ (10) 式对时间积分,得到³ $\Lambda_u \rightarrow 1$ ³ Σ_g^+ 的时间 积分荧光强度

$$I_1/\varepsilon_1 = \Gamma_1 h \nu_1 \int_0^\infty n_1(t) dt = \Gamma_1 h \nu_1 n \tau_1, \quad (11)$$

式中 ε₁ 为探测系统的光谱探测率;3D → 3P 时间积 分荧光强度为

$$I_{2}/\varepsilon_{2} = \Gamma_{2}h\nu_{2}\int_{0}^{\infty}n_{2}(t)dt = h\nu_{2}(\Gamma_{12}^{p} + k_{12}N)n\tau_{1};$$
(12)

5S→3P的时间积分荧光强度为

$$I_3/\varepsilon_3 = \Gamma_3 h_{\nu_3} \int_0^\infty n_3(t) \mathrm{d}t = \Gamma_3 h_{\nu_3} k_{13} N n_{\tau_1 \tau_3}.$$
(13)

由(11)~(13)式得到光强比

$$\frac{I_2/\varepsilon_2}{I_1/\varepsilon_1} = \frac{\lambda_1}{\lambda_2} \Big(\frac{\Gamma_{12}^{p}}{\Gamma_1} + \frac{k_{12}}{\Gamma_1} N \Big), \qquad (14)$$

$$\frac{I_1/\varepsilon_1}{I_3/\varepsilon_3} = \frac{\lambda_3}{\lambda_1} \Big(\frac{\Gamma_1 k_3^{\text{REP}}}{\Gamma_3 k_{13}} + \frac{\Gamma_1}{k_{13}} \frac{1}{N} \Big).$$
(15)

(14) 式的光强比与 N 成线性关系,直线的斜率和截 距分别给出 k_{12}/Γ_1 , Γ_{12}^P/Γ_1 ,结合由(5) 式确定的 Γ_1 + Γ_{12}^P ,得到 Γ_1 , k_{12} 和 Γ_{12}^P 。(15) 式的光强比与 1/N 成 线性关系,可从该直线的斜率和截距得到 k_{13} 和 k_3^{REP} 。

4 实验结果与讨论

二步激发 Na₂ 至³ Λ_u 高位态,观察到中心波长 位于671.3 nm的脉冲荧光发射带,其波长短于 OPO 脉冲激发波长,故可判断其为³ $\Lambda_u \rightarrow 1$ ³ Σ_g^+ 的辐射跃 迁(图 2)。图 3 是 Na 密度为 2×10¹⁴ cm⁻³ (558 K),671.3 nm时间分辨荧光强度的对数描绘, 从直线的斜率得到³ Λ_u 态的有效寿命为21 ns。从图 中可以看出,在跃迁开始约30 ns的时间内,³ Λ_u 态布 居完全由双共振激光产生,衰落是一纯指数[见(2) 式]。随着时间的推移,其他 Na 原子及 Na₂ 激发态 向³ Λ_u 态的碰撞转移对³ Λ_u 态的布居才会产生影响。 改变池温,即改变 Na 原子密度得到不同 Na 密度下 的有效寿命。

Fig. 3 Semilog plot for time-resolved fluorescence in

 ${}^{3}\Lambda_{u} \rightarrow 1 \; {}^{3}\Sigma_{e}^{+}$ transition at 558 K

利用 Stern-Volmer 方程(5), 描绘出有效寿命 的倒数与 Na 密度的关系, 如图 4 所示。由直线的 斜率得到 $k_{12} + k_{13} + k_1 = (2.4 \pm 0.5) \times 10^{-9}$ cm³/s (误差为标准差, 下同), 而 Na-Na₂ 碰撞的相对速率 为 $v = (8kT/\pi\mu)^{1/2} = 8.78 \times 10^4$ cm/s, 故截面 σ_{12} + $\sigma_{13} + \sigma_3 = (2.7 \pm 0.5) \times 10^{-14} \text{ cm}^2$ 。从直线的截距得 到³ $\Lambda_u \rightarrow 1^{-3} \Sigma_g^+$ 的辐射率与³ $\Lambda_u \rightarrow 3D$ 的预解离率之 和 $\Gamma_1 + \Gamma_{12}^{-1} = (4.8 \pm 1.2) \times 10^7 \text{ s}^{-1}$ 。

图 5 给出了(I_2/ϵ_2)/(I_1/ϵ_1)与 Na 密度的关系, 由(14)式强度比与 N 成线性关系,从直线的斜率和 截距分别给出 $k_{12}/\Gamma_1 = 2.8 \times 10^{-18} \text{ cm}^3, \Gamma_{12}^p/\Gamma_1 =$ 0.19。由前面得到的 $\Gamma_1 + \Gamma_{12}^p$ 的值,确定 $\Gamma_{12}^p = (8.0 \pm 2.4) \times 10^6 \text{ s}^{-1}, \Gamma_1 = (40 \pm 10) \times 10^{-6} \text{ s}^{-1}, \text{而} \sigma_{12} =$ $k_{12}/v = (1.1 \pm 0.3) \times 10^{-15} \text{ cm}^2$ 。

图 5 光强比(I_2/ϵ_2)/(I_1/ϵ_1)与 Na 密度 N 的关系

Fig. 5 Plot of observed ratio $(I_2/\epsilon_2)/(I_1/\epsilon_1)$ against N

由(15)式,光强比(I_1/ϵ_1)/(I_3/ϵ_3)与1/N成线 性关系,如图 6 所示,从该直线的斜率和截距分别得 到 $\sigma_{13} = k_{13}/v = (6.2 \pm 1.9) \times 10^{-15} \text{ cm}^2, \sigma_3^{\text{REP}} =$ (2.7±0.9)×10⁻¹⁵ cm²。这里 $\Gamma_3 = 1.3 \times 10^7 \text{ s}^{-1}$ 取 自文献[11]。直接测量过程(1)的截面 σ^{REP} 是困难 的^[10],文献[12]建议用细致平衡原理估算,而能量 合并(EP)过程的 3P+3P→5S+3S 的截面 $\sigma^{\text{EP}} =$ (1.6±0.35)×10⁻¹⁵ cm^{2[13]}。因 2 $E_{3P} - E_{5S} =$ 735 cm⁻¹,故

$$\sigma^{\text{EP}}/\sigma^{\text{REP}} = \frac{1}{9} \exp(735/kT) = 0.51,$$
 (16)

从而估算出 $\sigma^{\text{REP}} = (3.1 \pm 0.35) \times 10^{-15} \text{ cm}^2$ 。在该 误差范围内与本实验结果 σ_3^{REP} 符合得很好。

5 结 论

在样品池条件下,利用光学-光学双共振技术, 分别测量了时间分辨和时间积分荧光强度,并考虑 了由高位分子态与原子碰撞产生的高位原子态的 REP 过程,得到了 $Na_2({}^{3}\Lambda_u)$ 到 Na(3D)的预解离率 及 ${}^{3}\Lambda_u \rightarrow 3D,5S$ 的碰撞截面。

参考文献

- Cedomil Vacla, Vlasta Horvatic, Kay Niemax. Radiative transport and collisional transfer of excitation energy in Cs vapors mixed with Ar or He [J]. Spectrochim. Acta B, 2003, 58(7):1235~1277
- 2 Yifan Shen, Kang Dai, Baoxia Mu *et al.*. Energy-pooling collisions in Rb-Cs vapor mixture $\text{Rb}(5P_J) + \text{Cs}(6P_{3/2}) \rightarrow \text{Rb}(5S_{1/2}) + \text{Cs}(nl_{J'}) [J]$. *Chin. Opt. Lett.*, 2006, 4(9):501~504
- 3 Chen Jie, Bai Zhen'ao, Zhao Yikun et al.. Measurement and evaluation of Rb (5P_{3/2}) level effective radiative rate in the vapor mixed with Ar and N₂[J]. Chinese J. Lasers, 2008, 35 (6):907~910

陈 洁,白振岙,赵亿坤 等. Rb+(Ar,N₂)混合蒸气中 5P_{3/2}能 级有效辐射率的计算和测量[J]. 中国激光,2008,**35**(6):907 ~910

- 4 Shen Yifan, Li Wanxing. Dissociation of the NaK(E) state and branching ratio of the Na(3P_J) fine-structure levels [J]. *Chinese J. Lasers*, 2002, A29(10):879~881
 沈异凡,李万兴. NaK(E)态的解离和 Na(3P_J)的精细结构能级 分支比[J]. 中国激光, 2002, A29(10):879~881
- Z. Wu, J. Huennekens. Predissociation and collisional depopulation of the Cs₂(E) state [J]. J. Chem. Phys., 1984, 81(10):4433~4446
- 6 Z. J. Jabbour, J. Huennekens. A study of the predissociation of NaK molecules in the $\sigma^{-1}\Sigma^{+}$ state by optical-optical double resonance spectroscopy [J]. J. Chem. Phys., 1997, **107**(4): 1094~1105
- 7 L. K. Lam, T. Fujimoto, A. C. Gallagher *et al.*. Collisional excitation transfer between Na and Na₂[J]. J. Chem. Phys., 1978, **68**(8):3553~3561
- 8 J. Huennekens, S. Schaefer, M. Ligare *et al.*. Observation of the lowest triplet transitions in Na₂ and K₂ [J]. J. Chem. Phys., 1984, 80(10):4794~4799
- 9 A. Henriet, F. Masnou-Seeuws. The Pluvinage method for alkali dimmers: III. potential energy curves for the excited states of Na₂up to the (3p+3p) dissociation limit [J]. J. Phys. B, 1987, 20:671~691
- S. Guldberg-Kjær, G. De Filippo, S. Milosevic *et al.*. Reverse energy-pooling collisions: K(5D) + Na(3S)→K(4P) + Na(3P) [J]. Phys. Rev. A, 1997, 55(4):R2515~R2518
- Constantine E. Theodosiou. Lifetimes of alkali-metal-atom Rydberg states [J]. Phys. Rev. A, 1984, 30(6):2881~2909
- 12 G. De Filippo, S. Guldberg-Kjær, S. Milošević et al.. Reverse energy pooling in a K-Na mixture [J]. Phys. Rev. A, 1998, 57 (1):255~266
- 13 J. Huennekens, A. Gallagher. Cross sections for energy transfer in collisions between two excited sodium atoms [J]. *Phys. Rev. A*, 1983, **27**(2):771~784